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ABSTRACT

Limit loads under plane stress and plane strain are found for a
circumferentially reinforced elastic-plastic ring subjected to interior
pressure. These are used as bounds on an estimate of the failure pressure of
a SiC/Ti test ring that is being fabricated and tested under the
co-sponsorship of NASA Lewis Research Center and Pratt and Whitney
Aircraft. The ring is to serve as a benchmark against which deformation and
fallure analysis methods can be assessed. An anisotropic perfect plasticity
idealization of the SiC/Ti ring material is made and used in the limit load
calculations. An estimate of the failure pressure of the NASA/PW
benchmark test ring is given.
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INTRODUCTION

- A plastic limit analysis is made for estimating the failure pressure of a
SiC/Ti test ring subjected to a monotonically increasing pressure at 427 C.
The circumferentially reinforced SiC/Ti ring models a critical aircraft
engine component. The fabrication and testing of the ring is co-sponsored
by NASA Lewis Research Center and Pratt and Whitney Aircraft as a.
benchmark for assessing the applicability and accuracy of structural
analysis and failure prediction methods for metallic composites.

Following Robinson and Duffy (1990) and Binienda and Robinson
(1990), the SiC/Ti material is considered a pseudohomogeneous, locally
transversely isotropoic continuum and is idealized as elastic perfectly
plastic. The concepts of limit analysis of elastic—plastic continua are used
“under the assertion that strains large enough to cause rupture occur only as
the plastic limit load P! is reached (fig.1). This approach circumvents
details such as Tesidual stresses that affect the initial yield pressure Py
(fig.1) and the intermediate elastic-plastic response but not the limit
pressure Pl The failure pressure of the NASA/PW ring is bounded by
calculating the limit pressures of the two limiting cases of plane stress and
plane strain. '

The objective is to provide an estimate of the fallure pressure of the
NASA/PW  benchmark ring using approximate methods useful to the
design engineer without conducting a detailed and costly structural analysis
on a large computer. Limit analysis provides closed form expressions for the
failure pressure, or bounds on it, valid for a range of ring geometries and
material properties; such simple and flexible tools are useful to the designer,
especially in the early stages of design. The limit load calculations also

provide a check for verifying the correctness of a more comprehensive finite



element analysis of the NASA/PW ring,

The authors anticipate a sequel to this publication comparing the
results obtained here with experimental results on the NASA/PW
benchmark ring as they become available.

LIMIT ANALYSIS

 We first state the anisotropic plasticity theory used in the analysis.
Following Robinson and Duffy (1990), di(x;) is a unit vector field
designating the local fiber direction (normal to the plane of transverse
isotropy) at each material point. Djj = did; is a symmetric second rank
orientation tensor. The yield function ¢(;;) is

2 9
Hoy) = I -1 -K, (1)
written in terms of two invariants of the deviatoric stress s; j and Djj, viz,
J2=—%-8ij81i (2)
and I = Dyjs5 (3)

The parameter 0 < ( < 1 designates the degree of anisotropy. ( = 0
corresponds to full isotropy whereas ( =1 indicates unlimited strength in
the fiber direction. K is the yield stress under transverse shear.

The flow law is

&= A5 (A20) i ¢=0 and Tijo5=0 ,‘ (4)
éij=0 if <0 or'¢=0and Fij&ji<0
in which Tij = sij - —%—(I(3Dij - &) (5)



Note that with { = 0 this theory reduces to the classical J; (v.Mises)
theory of a perfectly plastic solid.
Reduction of eqs.(1)~(5) to uniaxial stress gives

=KV/3/(-() and Y.=KyT2[(&] (6)

as the respective yield stresses along and transverse to the fiber direction.

In terms of cylindrical coordinates appropriate for the ring (fig.2) the
nonzero stress components are ¢;,0. and ¢,. The inner and outer radii are
denoted as a and b, respectively. Circumferential fiber reinforcement
dictates that Dgg= D, = 1, otherwise D;; = 0.

The deviatoric stress components are

8, = —3—{ +(o7-0¢)]

8 = ‘3"[( ) (" c=0r)] (7)

Sr - T[ a'r"o'c 0',-—0’2

and the components of T'; are

Ti=s,+ _ITCSC
Te=(1-() sc (8)

Tr=s+ -é—(sc

In these terms, the yield function eq.(1) becomes

b = 3o+ 857) - (3(-D)ac- K? (9

and the flow law is



ép= AT, if ¢=0 and Tpop=0 (10)

=0 f$<0 o ¢=0 and Tpop< 0
with pP=1z.CrI

The equilibrium equation relating ¢, and o, is

r g—r-a, = 0.-0r (11)

and the compatibility equation in rate form is

ri) = & (1)

Generally, compatibility must be satisfled by the total strain rates.
However, at the limit load where the elastic strain rates vanish, eq.(12)

must be satisfied by the plastic strain rate field.

We shall first consider the plane strain problem, i.e., ¢; = 0. Using
this condition in eqs.(7),(8) and (10) results in

o= (FE)or + G, 1)

Thus we can eliminate ¢, in eqgs.(7) and in the yield function eq.(9) giving

¢=T}-:g—(a'c—a'r)2-K2= 0 (14)

or O0r =% F‘i’;{: K (15)

Fig.3 shows the yield surface, eqs.(15), in the dimensionless stress space
(6¢/2K, ¢+/2K). Also shown is a typical stress profile a-b for pressure
loading under plane strain; evidently, the positive root in eqs.(15) is the
physically meaningful one. Combining this and the equilibrium eq.(11),



yields a separable differential equation in o, and r. This equation can be
integrated from r =a to r =b, making use of the boundary conditions
o(a) = -P! and a(b) = 0, to yield a lower bound on the (dimensionless)
limit pressure P1/2K for plane strain, i.e.,

Pl 1 b
®=1) 0 3 (16)

So far, only equilibrium, the constitutive law and the boundary conditions
are shown to be satisfied (not compatibility), restricting eq.(16) to be a
lower bound on the limit pressure.

The dimensionless equilibrium stress field at the limit pressure is

%ﬁ:-%%ln? (17)
ﬁ:%%u—m?) (18)

with 0,/2K given by eq.(13). Inserting this stress field in eqs.(7),(8) and
(10) results in the associated plastic strain rate field

=0

ec= A1) 2ij3,§:=
e,=-A(r)2KP,§?=-

where, consistent with the perfect plasticity constitutive law, A is taken as

=k ad A':?KJ%%::const.

This strain rate field is seen to satisfy compatibility, eq.(12), thus elevating

(19)

HJ‘ >:

HA):-



eq.(16) to the eract limit pressure for plane sirain under the present
material idealization.

We now consider the plane stress problem in which ¢, =0 . With this
condition in egs.(7), the yield condition eq.(1) becomes

¢= % [(1‘()%2 = (1=()ocor + (1- é)”rz] -K? (20)
At yield, ¢ = 0, we can solve eq.(20) for o, giving

Oc = % [or 2 | B(4K2- 0,%) ] o 2K (21)

with g= ‘IET

The yield surface, eq.(20), is shown in the dimensionless stress space
(0/2K, 0+/2K) of fig.4d for { = 0 (isotropy), ¢ = 0.977 ( used subsequently
for the NASA/PW ring) and ¢ = 1 (the limiting case of infinite strength
in the fiber direction). Also indicated in fig.4 is a typical stress profile a~b
for a plane stress solution under pressure loading with (= .977.

As for plane strain, the positive root in eqs.(21) is the physically
meaningful one. It can be used to eliminate ¢, in the equilibrium eq. (11),
again resulting in a differential equation in ¢, and r only. Integrating, as
earlier, over r=a to r=>b and invoking the boundary conditions ¢(a)
=-P! and ¢,(b) = 0, we obtain

0
2 dn b P!
=2 i<l (22)
JPIVE(I‘U)‘” » x®

~ 7K

as a lower bound on the (dimenionless) limit pressure P!/2K for plane



stress.
The dimensionless equilibrium stress field for plane stress is

accordingly

0

2 dn b 4

=In- o 2 -1 (23)

Ja, B - 1 T 2K
72K

with ¢./2K given by eq.(21) and o, =0.

Here, it is not such a simple matter to find an associated plastic strain
rate field and show compatibility. However, we recognize that the strain
rate field, eqs.(19), although not associated with the equilibrium plane
stress field (eqs.(23) and (21)) through the constitutive law, is nevertheless
kinematically admissible under plane stress and thus serves for establishing
an upper bound on the limit pressure. This upper bound is obviously the
limit load corresponding to plane strain, i.e., eq.(16).

Another upper bound on the limit load for plane stress is that
corresponding to a local (out of plane) failure at the inner radius r = a
directly under the applied pressure. This upper bound is P!/2K =1 asis
easily calculated using the kinematically admissible slip line field of fig.5.
For this local mode to occur, the point on the stress profile corresponding to
r = a must be at C on the yield surface (fig.4). Point C (¢¢/2K = -1/2,
or/2K = -1) is independent of ( and has an associated strain rate vector

with components ¢, =0 and € = - ¢,

Fig.6 is a plot of P!/2K vs. { for a pressurized ring in plane stress
with b/a = 1.8, showing the lower bound, eq.(22), and the upper bounds,
eq.(16) and P!/2K = 1. For an isotropic material ¢ = 0, the limit pressure
(fig. 6) is P!/2K ~0.58. As the material is strengthened circumferentially,



the limit pressure increases (P!/2K % 0.84 at ¢ = 0.6). The limit pressure
continues to increase with increasing ( until a critical value 13 reached
(here, ¢ % 0.8 ) and the failure mode becomes one of local (out of plane)
flow at r = a. Further circumferential strengthening is ineffective in
increasing the limit pressure. As ( increases beyond the critical value, the
failure mode remains one of local flow with P!/2K = 1; we refer to this
condition as over—reinforcement. Analogous behavior is found by Lance and
Robinson (1972) in other reinforced structures, e.g., beams, plates, etc. We
note that the upper bound in fig.6 corresponding to eq.(16), i.e.,the exact
limit load under plane strain, continues to increase with ( , becoming
infinite as ¢ - 1. Thus, over—reinforcement in the sense discussed here does
not occur under plane strain conditions.

The critical ¢ in plane stress for a given b/a is obtained from
eq.(22) by setting P!/2K = 1. This is illustrated in the plot of b/avs. { in
fig.7. Alternatively, this graph can be interpreted as giving the critical b/a
ratio at which the local (out of plane) failure mode takes effect for a given
(. For thick rings with b/a > the critical ratio, the ring fails locally at
r=a and PlI/2K=1.

Fig.8 shows the yield surface in plane stress, eq. (20), for ¢ = 08.
The stress profile a-b in fig.8 (solid curve) corresponds to the plane stress
solution discussed above for b/a = 1.8. Note that point a (i.e, r = a) on
the stress profile coincides with point C (cf.fig.4), which, as remarked
earlier, is a necessary condition for the local (out of plane) failure mode. The
dotted curve in fig.8 represents a stress profile typical for bfa < 18, 1e,,
for a thinner ring.

We shall apply the results of these limit pressure calculations to the
NASA/PW  test ring in the following sections. However, first we
characterize the SiC/Ti material using available experimental data.



CHARACTERIZATION OF SiC/Ti

The dotted curves in fig.9 represent longitudinal and transverse
tensile data on SiC/Ti at 427 C. The solid curves are the perfect plasticity
idealizations of these data used in the subsequent limit pressure
calculations. The yield stress in the fiber direction Y| is taken as being
coincident with the fracture strength in that direction, viz., Y| = 200 ks1.
Two values are taken for the transverse yield strength, Yy = 30 ksi and Y,
= 35 ksi delimiting a range of possible idealizations.

The material parameters ( and K corresponding to these choices of
yield stress are obtained through eqs.(6) and are shown in the following
table (Y}, Yi and K are in ksi):

Table 1
YI Y ¢ K
200 30 983  15.04
200 3 977 17.56

APPLICATION TO THE NASA/PW TEST RING

The NASA/PW ring has a circumferentially reinforced SiC/Ti core
covered with a layer of Ti cladding. Fig.10 shows the dimensions of the
cross section and the relevant radii. Limit load calculations are made for

two ring geometries (a and b are in inches), viz.,

Table 2
b a b/a
321 278 1155
325 274 1186
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The first, b/a = 1.155 corresponds to the actual radii of the SiC/Ti core.
This calculation ignores the presence of the cladding, taking the strength of
the ring to result entirely from the reinforced core. The second calculation,
b/a = 1.186 incorporates effective radii (b ¥ 3.25 and a~ 2.74) as a
means of approximating the small contribution of strength of the Ti
cladding. Here, the choice of radii amounts to enlarging the core dimensions
by about one third of the cladding thickness. A more prudent choice must
come from engineering experience based on experimental observation.
Critical values of ¢, delimiting local failure in plane stress (fig.7), are
¢ =.992 and .989 for b/a = 1.155 and 1.186, respectively. As each of
these values exceeds ( = .977 and .983, identified in table 1 for the
NASA/PW ring, we are assured that local failure is not a consideration
here. -
Plots of P1/2K vs. ( for b/a = 1.155 and 1.186 are shown in
figs.(11) and (12), respectively. In each case, the dotted (upper) curve
represents the exact limit pressure for plane strain and the upper bound for
plane stress (eq.(16)). As discussed earlier, the upper bound P!/2K = 1
relating to local flow at r = a does not play a role here. The solid (lower)
curve in each of the figs. (11) and (12) is the lower bound for plane stress
(eq.(22)). Specific values of the limit pressure for plane strain P! and the
lower bound for plane stress Pl corresponding to ( and K in Table 1
and the ratios b/a in Table 2 are calculated as (K, Pl and P} are in ksi):
Table 3

¢ K b/a P! P!

983 1504 1155 2563 2838

977 1756 1155 265 29.0

983 1504 1186 281 342

977 1756 1186 301 344

11



Table 3 indicates bounds on the limit pressure for b/a = 1.155 as
25.3 ksi < P! < 29.0 ksi, spanning + 7% about an average of 27.15 ksi.
Recalling that b/a = 1.155 implies the strength of the ring is attributable
solely to the SiC/Ti core, we anticipate these bounds might tend to
underestimate the strength of the NASA/PW ring.

Bounds for b/a = 1.186 (in which limited strength of the cladding is
accounted  for  through  specifying  effective  radil)  are
28.1 ksi < P! < 344 ksi. These range + 10% about an average of
31.25 ksi. The lesser value 28.1 ksi corresponds to the lower bound for
plane stress with a transverse yield strength of Y. = 30 ksi (fig.9); the
greater value 34.4 ksi relates to plane strain with Y; = 35 kei. The

authors submit these bounds as their best estimate of the failure pressure of

the NASA/PW benchmark ring at 427C.

CONCLUSIONS

The following accomplishments and conclusions are made in this
study:

¢ The limit load is found for a circumferentially reinforced
elastic-plastic ring (cylinder) subjected to interior pressure and in a
condition of plane strain.

o Upper and lower bounds on the limit load are found for a reinforced
ring (disc) under conditions of plane stress.

¢ These closed form solutions apply for all values of the material
parameters 0 < (<1 and K (designating the degree of reinforcement and
the yield stress in transverse shear, respectively), and any b/a (ratio of
outer to inner radius). The results provide simple and useful tools for the

engineer designing fiber reinforced metallic rings.

12



o As (-1 the limit pressure of the circumferentially reinforced ring
in plane strain increases indefinitely. Conversely, the limit pressure of the
ring in plane stress is bounded by its transverse (% matriz) strength,
ultimately failing by local plastic (out of plane) flow directly under the
applied pressure.

o The limit load calculations are applied to the NASA/PW SiC/Ti
test ring giving an estimated range of the failure pressure at 427 C of %28 -
34 ksi.

o The calculated bounds on the limit pressure are useful in providing

a check on more comprehensive finite element analyses.
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Fig.1 Schematic diagram of pressure vs. radial displacement.
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Fig.2 Cylindrical geometry (z,c,r) of circumferentially reinforced ring. b =

outer radius, a = inner radius.
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Fig.3 Yield surface for plane strain in the dimensionless stress space
0+/2K,0¢/2K. Typical stress profile a-b (r=a - r=b) for pressure
loading.
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Fig4 Yield surfaces for plane stress in a,/2K,0¢/2K space. Surfaces are
shown for { =0, ( = 977 and { = 1. Typical stress profile a-b for
pressure loading with { = .977.
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Fig5 Kinematically admissible slip line field for local (out of plane ) flow
~abt r=a. Upper bound calculation giving P1/2K = 1.
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Fig6 Pl/'2lK7 vs. ¢ for a préssuriigd ring in plane stress with b/a = 1.8,
Lower bound, eq.(22), and upper bounds, eq.(16) and P!/2K = L.
Critical {~0.3.
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Fig.7 b/a va. { for local (out of plane) failure in plane stress. P1/2K = 1.
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Fig8 Yield surface in plane stress with ¢ = 0.8. Stress profile a-b (solid
curve) for b/a = 1.8. Typical stress profile (dotted) for b/a < 1.8.
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Fig.9 Longitudinal and transverse tensile curves (dotted) for SiC/Ti at
427 C. Elastic perfectly plastic idealizations (solid curves) indicating

Y] and Yt.
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Fig.10 Cross section of NASA/PW test ring. Actual and effective radii.

o
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1.2

b/a = 1.155

Pl2K

Fig.11 Pl/2K vs. { for b/a = 1.155. Plane strain limit pressure and plane
stress upper bound (dotted). Plane stress lower bound (solid).
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Fig.12 P1/2K vs. ¢ for b/a = 1.186. Plane strain limit pressure and plane
stress upper bound (dotted). Plane stress lower bound (solid).
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